Carbohydrate Research 343 (2008) 412-413

Corrigendum

Corrigendum to "Synthesis of sugar-lactams from azides of glucuronic acid" [Carbohydr. Res. 342 (2007) 1953]

Christina Loukou, Manuela Tosin, Helge Müller-Bunz and Paul V. Murphy*

UCD School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland

Available online 22 October 2007

The crystal structure diagrams for compounds 10 and 14, that were published in the original manuscript were of the enantiomers of 10 and 14. The diagrams for the correct enantiomers are provided in Figures 1 and 3 and the crystallographic information files have been supplied as Supplementary data. In addition, the crystal data and structure refinement for 11, measured at 100 K and which corresponds with the structure shown in Figure 2 of the original manuscript, is provided in Table 2.

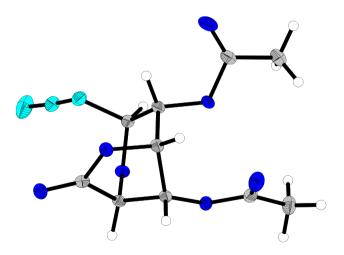
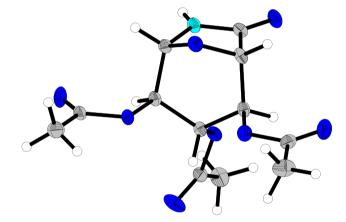



Figure 1. X-ray crystal structure of 10. Thermal ellipsoids are drawn on the 50% probability level.

Figure 3. X-ray crystal structure of 6,1-lactam **14**. Thermal ellipsoids are drawn on the 50% probability level.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.carres. 2007.10.009.

DOI of original article: 10.1016/j.carres.2007.04.003

^{*} Corresponding author. Fax: +353 1 7162501; e-mail: Paul.V.Murphy@ucd.ie

Table 2. Crystal data and structure refinement for 11

Empirical formula $C_{10}H_{13}NO_7$ 259.21 259.21 $100(2)$ K 0.71073 Å		
Temperature 0.71073 Å	Empirical formula	$C_{10}H_{13}NO_7$
Wavelength Crystal system Space group Unit cell dimensions $P2(1)2(1)2(1)$ Unit cell dimensions $P2(1)2(1)2(1)$ $P2(1)2(1)(1)$ $P2(1)2(1)(1)$ $P3(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)($	2	
Crystal system Space group $P2(1)2(1)2(1)$ Unit cell dimensions $P2(1)2(1)2(1)$ $a=7.7456(7)$ Å, $\alpha=90^\circ$ $b=10.6611(9)$ Å, $\beta=90^\circ$ $c=14.2043(13)$ Å, $\gamma=90^\circ$ Volume $P2(1)2(1)2(1)$ $a=7.7456(7)$ Å, $\alpha=90^\circ$ $b=10.6611(9)$ Å, $\beta=90^\circ$ $c=14.2043(13)$ Å, $\gamma=90^\circ$ $c=14.2043(13)$ Å, $\gamma=90^\circ$ Volume $P2(1)2(1)2(1)$ $P3(1)2(1)2(1)$ $P3(1)2(1)2(1)2(1)$ $P3(1)2(1)2(1)2(1)2(1)2(1)2(1)2(1)2(1)2(1)2$	Temperature	` ′ •
Space group $P2(1)2(1)2(1)$ Unit cell dimensions $a = 7.7456(7)$ Å, $α = 90^{\circ}$ $b = 10.6611(9)$ Å, $β = 90^{\circ}$ $c = 14.2043(13)$ Å, $γ = 90^{\circ}$ Volume $1172.94(18)$ Å ³ Z 4 Density (calculated) 1.468 Mg/m^3 Absorption coefficient 0.126 mm^{-1} $F(000)$ 544 Crystal size $0.80 \times 0.30 \times 0.20 \text{ mm}^3$ Theta range for data collection $2.39-28.50^{\circ}$ Index ranges $-10 \leqslant h \leqslant 10, -14 \leqslant k \leqslant 14,$ $-19 \leqslant l \leqslant 18$ $11,299$ Independent reflections $1719 [R_{int} = 0.0275]$ Completeness to theta = 28.50° 99.8% Absorption correction Semi-empirical from equivalents Maximum and minimum transmission $0.9752 \text{ and } 0.8030$ Refinement method Full-matrix least-squares on F^2 Data/restraints/parameters $1719/0/173$ Goodness-of-fit on F^2 1.065 Final R indices $[I > 2σ(I)]$ $R_1 = 0.0336, wR_2 = 0.0851$ $R_1 = 0.0356, wR_2 = 0.0868$ $0.344 \text{ and } -0.188 \text{ e}$	Wavelength	0.71073 Å
Unit cell dimensions $a = 7.7456(7)$ Å, $α = 90^{\circ}$ $b = 10.6611(9)$ Å, $β = 90^{\circ}$ $c = 14.2043(13)$ Å, $γ = 10^{\circ}$ $c = 14.$		Orthorhombic
$b = 10.6611(9) \text{ Å}, \beta = 90^{\circ}$ $c = 14.2043(13) \text{ Å}, \gamma = 90^{\circ}$ $Volume$ $I172.94(18) \text{ Å}^{3}$ Z A Density (calculated) $Absorption coefficient$ $F(000)$ $Crystal size$ $Theta range for data collection$ $Index ranges$ $Index ranges$ $Independent reflections$ $Completeness to theta = 28.50^{\circ}$ $Absorption correction$ $Maximum and minimum$ $transmission$ $Refinement method$ $Refinement method Refinement method $	Space group	P2(1)2(1)2(1)
$c = 14.2043(13) \text{ Å}, \ \gamma = 90^{\circ}$ Volume Z A Density (calculated) $Absorption coefficient \\ F(000) \\ Crystal size \\ Theta range for data collection \\ Index ranges -10 \leqslant h \leqslant 10, -14 \leqslant k \leqslant 14, \\ -19 \leqslant l \leqslant 18 Reflections collected 11,299 Independent reflections Completeness to theta = 28.50^{\circ} Absorption correction Absorption correction \\ Maximum and minimum \\ transmission \\ Refinement method Refinement method \\ Reflections (I > 2\sigma(I)] \\ Rindices (all data) \\ Largest difference peak and Absorption (17.2043(13) \text{ Å}, \ \gamma = 90^{\circ} 1712.94(18) \text{ Å}^3 1.468 \text{ Mg/m}^3 0.126 \text{ mm}^{-1} 0.126 \text{ mm}^{-1} 0.80 \times 0.30 \times 0.20 \text{ mm}^3 2.39-28.50^{\circ} 1.96 \times 18 \times 19 \times 19 \times 19 \times 19 \times 19 \times 19 \times 19$	Unit cell dimensions	
Volume Z Z $Density (calculated) \\ Absorption coefficient \\ F(000) \\ Crystal size \\ Theta range for data collection \\ Index ranges \\ Independent reflections \\ Completeness to theta = 28.50° \\ Absorption correction \\ Maximum and minimum \\ transmission \\ Refinement method \\ Refinement method \\ Reflections (all data) \\ Reflections (all data) \\ Largest difference peak and 1.468 \text{ Mg/m}^3 \\ 4.294 \\ 4.468 \text{ Mg/m}^3 \\ 4.296 \\ 4.286 \text{ Mg/m}^3 \\$		$b = 10.6611(9) \text{ Å}, \ \beta = 90^{\circ}$
$\begin{array}{llll} Z & 4 \\ \text{Density (calculated)} & 1.468 \text{ Mg/m}^3 \\ \text{Absorption coefficient} & 0.126 \text{ mm}^{-1} \\ F(000) & 544 \\ \text{Crystal size} & 0.80 \times 0.30 \times 0.20 \text{ mm}^3 \\ \text{Theta range for data collection} & 2.39-28.50^{\circ} \\ \text{Index ranges} & -10 \leqslant h \leqslant 10, -14 \leqslant k \leqslant 14, \\ -19 \leqslant l \leqslant 18 \\ \text{Reflections collected} & 11,299 \\ \text{Independent reflections} & 1719 \left[R_{\text{int}} = 0.0275\right] \\ \text{Completeness to theta} = 28.50^{\circ} & 99.8\% \\ \text{Absorption correction} & \text{Semi-empirical from equivalents} \\ \text{Maximum and minimum} & 0.9752 \text{ and } 0.8030 \\ \text{transmission} & \text{Full-matrix least-squares on} \\ \text{Refinement method} & \text{Full-matrix least-squares on} \\ \text{Foodness-of-fit on } F^2 & 1.065 \\ \text{Final } R \text{ indices } \left[I > 2\sigma(I)\right] & R_1 = 0.0336, wR_2 = 0.0851 \\ R_1 = 0.0356, wR_2 = 0.0868 \\ \text{Largest difference peak and} & 0.344 \text{ and } -0.188 \text{ e Å}^{-3} \\ \end{array}$		$c = 14.2043(13) \text{ Å}, \ \gamma = 90^{\circ}$
Density (calculated) 1.468 Mg/m³ 0.126 mm $^{-1}$ $F(000)$ 544 $Crystal$ size 0.80 × 0.30 × 0.20 mm³ Theta range for data collection Index ranges $-10 \leqslant h \leqslant 10, -14 \leqslant k \leqslant 14, -19 \leqslant l \leqslant 18$ Reflections collected 11,299 Independent reflections 1719 $[R_{\rm int} = 0.0275]$ Completeness to theta = 28.50° 99.8% Absorption correction Semi-empirical from equivalents Maximum and minimum 0.9752 and 0.8030 transmission Refinement method Full-matrix least-squares on F^2 Data/restraints/parameters Goodness-of-fit on F^2 1.065 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0356, wR_2 = 0.0868$ Largest difference peak and 0.344 and -0.188 e Å $^{-3}$	Volume	$1172.94(18) \text{ Å}^3$
Absorption coefficient $F(000)$ 544 Crystal size $0.80 \times 0.30 \times 0.20 \text{ mm}^3$ Theta range for data collection Index ranges $-10 \leqslant h \leqslant 10, -14 \leqslant k \leqslant 14, -19 \leqslant l \leqslant 18$ Reflections collected $11,299$ Independent reflections $1719 \ [R_{\text{int}} = 0.0275]$ Completeness to theta $= 28.50^{\circ}$ Absorption correction 99.8% Absorption correction 99.8% Absorption correction 99.8% Maximum and minimum $0.9752 \text{ and } 0.8030$ transmission $0.9752 \text{ and } 0.8030$ Refinement method $0.9752 \text{ and } 0.8030$ Full-matrix least-squares on $0.9752 \text{ and } 0.8030$	Z	4
$F(000)$ 544 Crystal size $0.80 \times 0.30 \times 0.20 \text{ mm}^3$ Theta range for data collection $2.39-28.50^{\circ}$ Index ranges $-10 \leqslant h \leqslant 10, -14 \leqslant k \leqslant 14,$ Reflections collected $11,299$ Independent reflections $1719 [R_{\text{int}} = 0.0275]$ Completeness to theta = 28.50° 99.8% Absorption correctionSemi-empirical from equivalentsMaximum and minimum transmission $0.9752 \text{ and } 0.8030$ Refinement methodFull-matrix least-squares on F^2 Data/restraints/parameters $1719/0/173$ Goodness-of-fit on F^2 1.065 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0336, wR_2 = 0.0851$ R indices (all data) $R_1 = 0.0356, wR_2 = 0.0868$ Largest difference peak and $0.344 \text{ and } -0.188 \text{ e Å}^{-3}$	Density (calculated)	1.468 Mg/m^3
Crystal size $0.80\times0.30\times0.20~\mathrm{mm}^3$ Theta range for data collection $1.02\times10^{-10} \leq h \leq 10, -14 \leq k \leq 14, -19 \leq l \leq 18$ Reflections collected $11,299$ Independent reflections $1719~[R_{\mathrm{int}}=0.0275]$ Completeness to theta = 28.50° Absorption correction $80.9752~\mathrm{and}~0.8030$ Semi-empirical from equivalents $0.9752~\mathrm{and}~0.8030$ Transmission $1.02.99.8\%$ Absorption correction $1.02.99.8\%$ Semi-empirical from equivalents $0.9752~\mathrm{and}~0.8030$ Transmission $1.02.99.8\%$ Full-matrix least-squares on $1.02.99.8\%$ Data/restraints/parameters $1.02.99.8\%$ Full-matrix least-squares on $1.02.99.8\%$ Transmission $1.02.99.8\%$ Full-matrix least-squares on $1.02.99.8\%$ Transmission $1.02.99.8\%$ Reflections $1.02.99.8\%$ Absorption correction $1.02.99.8\%$ Semi-empirical from equivalents $1.02.99.8\%$ Transmission $1.02.99.8\%$ Transmission $1.02.99.8\%$ Absorption correction $1.02.99.8\%$ Absorption correction $1.02.99.8\%$ Semi-empirical from equivalents $1.02.99.8\%$ Transmission $1.02.99.8\%$ Transmission $1.02.99.8\%$ Absorption correction $1.02.99.9\%$ Absorption correction $1.02.99.9\%$ Absorption correction $1.02.99.9\%$ Abso	Absorption coefficient	0.126 mm^{-1}
Theta range for data collection Index ranges $ \begin{array}{ll} 2.39-28.50^{\circ} \\ -10 \leqslant h \leqslant 10, -14 \leqslant k \leqslant 14, \\ -19 \leqslant l \leqslant 18 \\ \hline \text{Reflections collected} \\ \hline \text{Independent reflections} \\ \hline \text{Completeness to theta} = 28.50^{\circ} \\ \hline \text{Absorption correction} \\ \hline \text{Maximum and minimum} \\ \hline \text{transmission} \\ \hline \text{Refinement method} \\ \hline \text{Refinement method} \\ \hline \text{Data/restraints/parameters} \\ \hline \text{Goodness-of-fit on } F^2 \\ \hline \text{Final } R \text{ indices } [I > 2\sigma(I)] \\ R \text{ indices (all data)} \\ \hline \text{Largest difference peak and} \\ \hline \end{array} \begin{array}{ll} 2.39-28.50^{\circ} \\ -10 \leqslant h \leqslant 10, -14 \leqslant k \leqslant 14, \\ -19 \leqslant l \leqslant 18 \\ \hline 10.0275] \\ 99.8\% \\ \hline \text{Semi-empirical from equivalents} \\ 0.9752 \text{ and } 0.8030 \\ \hline \text{Full-matrix least-squares on } F^2 \\ \hline 1.065 \\ \hline \text{R}_1 = 0.0336, wR_2 = 0.0851 \\ R_1 = 0.0356, wR_2 = 0.0868 \\ 0.344 \text{ and } -0.188 \text{ e Å}^{-3} \\ \hline \end{array}$	F(000)	544
Index ranges $-10\leqslant h\leqslant 10, -14\leqslant k\leqslant 14,\\ -19\leqslant l\leqslant 18$ Reflections collected $11,299$ Independent reflections $1719\ [R_{\rm int}=0.0275]$ Completeness to theta = 28.50° Absorption correction $8 = 28.50^\circ$ Semi-empirical from equivalents $0.9752\ {\rm and}\ 0.8030$ transmission $1.09752\ {\rm and}\ 0.8030$ Full-matrix least-squares on $1.09752\ {\rm and}\ 0.8030$ The squares on $1.09752\ {\rm and}\ 0.8030$ Full-matrix least-squares on $1.09752\ {\rm and}\ 0.8030$ Final R indices (I) and I indices (I) an	Crystal size	$0.80 \times 0.30 \times 0.20 \text{ mm}^3$
Reflections collected	Theta range for data collection	2.39-28.50°
Reflections collected	Index ranges	$-10 \leqslant h \leqslant 10, -14 \leqslant k \leqslant 14,$
Independent reflections Completeness to theta = 28.50° Absorption correction Semi-empirical from equivalents 0.9752 and 0.8030 transmission Refinement method Full-matrix least-squares on F^2 Data/restraints/parameters Goodness-of-fit on F^2 1.065 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0356$, $wR_2 = 0.0851$ $R_1 = 0.0356$, $wR_2 = 0.0868$ Largest difference peak and 0.344 and -0.188 e Å -3		$-19 \leqslant l \leqslant 18$
Completeness to theta = 28.50° Absorption correction Semi-empirical from equivalents Maximum and minimum 0.9752 and 0.8030 transmission Refinement method Full-matrix least-squares on F^2 Data/restraints/parameters Goodness-of-fit on F^2 1.065 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0336$, $wR_2 = 0.0851$ R indices (all data) $R_1 = 0.0356$, $wR_2 = 0.0868$ Largest difference peak and 0.344 and -0.188 e Å $^{-3}$	Reflections collected	11,299
Completeness to theta = 28.50° Absorption correction Semi-empirical from equivalents Maximum and minimum 0.9752 and 0.8030 transmission Refinement method Full-matrix least-squares on F^2 Data/restraints/parameters Goodness-of-fit on F^2 1.065 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0336$, $wR_2 = 0.0851$ R indices (all data) $R_1 = 0.0356$, $wR_2 = 0.0868$ Largest difference peak and 0.344 and -0.188 e Å $^{-3}$	Independent reflections	1719 [$R_{\text{int}} = 0.0275$]
equivalents 0.9752 and 0.8030 transmission Refinement method Full-matrix least-squares on F^2 Data/restraints/parameters Goodness-of-fit on F^2 Final R indices $[I > 2\sigma(I)]$ R indices (all data) Largest difference peak and $R_1 = 0.0356, wR_2 = 0.0868$ 0.344 and -0.188 e Å $^{-3}$		99.8%
equivalents 0.9752 and 0.8030 transmission Refinement method Full-matrix least-squares on F^2 Data/restraints/parameters Goodness-of-fit on F^2 Final R indices $[I > 2\sigma(I)]$ R indices (all data) Largest difference peak and $R_1 = 0.0356, wR_2 = 0.0868$ 0.344 and -0.188 e Å $^{-3}$	Absorption correction	Semi-empirical from
transmission Refinement method Full-matrix least-squares on F^2 Data/restraints/parameters Goodness-of-fit on F^2 1.065 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0336, wR_2 = 0.0851$ $R_1 = 0.0356, wR_2 = 0.0868$ Largest difference peak and 0.344 and -0.188 e Å $^{-3}$	_	
Refinement method Full-matrix least-squares on F^2 Data/restraints/parameters $1719/0/173$ Goodness-of-fit on F^2 1.065 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0336$, $wR_2 = 0.0851$ R indices (all data) $R_1 = 0.0356$, $wR_2 = 0.0868$ Largest difference peak and 0.344 and -0.188 e Å $^{-3}$	Maximum and minimum	0.9752 and 0.8030
F^{2} Data/restraints/parameters $Goodness-of-fit on F^{2}$ 1.065 $Final R indices [I > 2\sigma(I)]$ $R_{1} = 0.0336, wR_{2} = 0.0851$ $R_{1} = 0.0356, wR_{2} = 0.0868$ Largest difference peak and 0.344 and -0.188 e Å ⁻³	transmission	
Data/restraints/parameters 1719/0/173 Goodness-of-fit on F^2 1.065 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0336$, $wR_2 = 0.0851$ R indices (all data) $R_1 = 0.0356$, $wR_2 = 0.0868$ Largest difference peak and 0.344 and -0.188 e Å $^{-3}$	Refinement method	Full-matrix least-squares on
Goodness-of-fit on F^2 1.065 Final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0336$, $wR_2 = 0.0851$ $R_1 = 0.0356$, $wR_2 = 0.0868$ Largest difference peak and 0.344 and -0.188 e Å ⁻³		F^2
Final <i>R</i> indices $[I > 2\sigma(I)]$	Data/restraints/parameters	1719/0/173
R indices (all data) $R_1 = 0.0356$, $wR_2 = 0.0868$ Largest difference peak and 0.344 and -0.188 e Å ⁻³	Goodness-of-fit on F^2	1.065
Largest difference peak and 0.344 and -0.188 e Å ⁻³	Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0336, wR_2 = 0.0851$
Largest difference peak and 0.344 and -0.188 e Å ⁻³		